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Abstract— Our premise is that actions of manipulation are
represented at multiple levels of abstraction. At the high
level a grammatical structure represents symbolic information
(objects, actions, tools, body parts) and their interaction in a
temporal sequence, and at lower levels the symbolic quantities
are grounded in perception. In this paper we create symbolic
high-level representations in the form of manipulation action
tree banks, which are parsed from annotated action corpora.
A context free grammar provides the grammatical description
for the creation of the semantic trees. Experiments conducted
on the tree banks show that they allow to 1) generate so-called
visual semantic graphs (VSGs), 2) compare the semantic dis-
tance between steps of activities and 3) discover the underlying
semantic space of an activity. We believe that tree banks are
an effective and practical way to organize semantic structures
of manipulation actions for humanoids applications. They
could be used as basis for 1) automatic manipulation action
understanding and execution and 2) reasoning and prediction
during both observation and execution. The knowledge resource
follows the widely used Penn Tree Bank format.

I. Introduction

Autonomous humanoid robots need to have the capability
to understand, learn and execute actions of manipulation.
These actions involve objects and tools, are composed of
primitive sub-actions, and are performed using the robots’
effectors. Recent studies on humans have shown that gram-
matical structures underlie our representation of manipu-
lation actions, which are used both to understand and to
execute these actions. Understanding manipulation actions
is like understanding language, while executing them is like
generating language.

If a household robot is innately wired with the capability
of understanding and generating language, it should be able
to apply a similar mechanism to understand and execute
manipulation actions. It should be able to learn how to do an
action from either observing a human doing it (learn from
observation) or from parsing human instructions (learn from
language). However, given that there is effectively an infinite
number of ways to do a certain manipulation action, such as
for example, making a peanut butter and jelly sandwich [1],
the robot should be able to store and organize all the semantic
structures effectively, rather than simply an enumeration of
all possible ways. Moreover, assuming that the semantic
structure has been stored properly in the robot memory,
further problems of doing the prediction and reasoning over
them effectively also need to be solved.
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In the field of computational linguistics, parsed text
corpora with annotations presented as compositional tree
structures, also called tree banks [2] have proven to be the
most effective way to organize syntactic and even semantic
structures of natural languages. The typical way of building a
tree bank involves: 1) first humans annotate each sentence in
the corpus extensively, 2) then parse them into grammar trees
(or other more sophisticated structures). These annotated tree
banks can serve as learning bases for automatic sentence part
of speech (POS) tagging and bottom up parsing models.
Later these models can be used to automatically tag and
parse more natural language resources in order to bootstrap
the whole tree bank. Prediction and reasoning based on
tree banks has been extensively studied in the field of
computational linguistics.

Similarly, in this paper, we propose that tree banks are an
effective and practical way to organize semantic structures
of manipulation actions for robotics. They could be used as
basis for 1) automatic manipulation action understanding and
execution and 2) doing reasoning and prediction during both
observation and execution, as illustrated in Fig. 1.

The rest of the paper is organized as follows: In Sec. II
a brief survey of related work is provided. In Sec. III we
will briefly introduce the manipulation action context-free
grammar that is used to parse semantic tree structures in
this work. In Sec. IV the technical details for building the
manipulation action tree banks are presented. In Sec. V two
sets of publicly available manipulation action datasets are
used to build different levels of tree banks, three experiments
are conducted, and one example of using the knowledge
resource is given. Sec. VI describes conclusion and future
works. The tree banks can be downloaded from http:

//www.umiacs.umd.edu/˜yzyang/MA_Tree_Bank/.

II. RelatedWork

Robotic manipulation has attracted a great amount of inter-
est due to its direct applications in intelligent manufacturing.
With the recent development of advanced robotic manipula-
tors, work on robust and accurate manipulation techniques
has followed quickly. For example, [3] developed a method
for the PR2 to fold towels, which is based on visual processes
of grasp point detection and multiple-view geometry. [4]
and [5] developed for their humanoid robot, ARMAR-III,
manipulation and perception capabilities based on imitation
learning for human environments. [6] proposed learning
object affordances models in multi-object manipulation tasks.
[7] investigated robots searching for objects using reasoning
about both perception and manipulation. A good survey on
humanoid dual arm manipulation can be found in [8]. These
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works achieved promising results on robotic manipulation,
but they focused on specific actions, and do not allow for
generalization. Here we propose that manipulation action tree
banks, by capturing the syntactic structure of manipulation
actions, provide a general solution to organize the underlying
semantics behind specific actions and allow the robot to do
more sophisticated tasks like reasoning and prediction.

Fig. 1: A robotic system using a manipulation tree bank.

Human activity recognition and understanding has been
studied heavily in Computer Vision recently and there is
a large range of applications for this work in areas like
human-computer interactions, biometrics, and video surveil-
lance. Both visual recognition methods, and the non-visual
description methods using motion capture systems have been
used. Surveys of the former can be found in [9] and [10].

There has been some work on the way instructions are
stored and analyzed for manipulation actions, generally as
sequences. Work done by [11] among others investigates how
these sequence datasets can be processed in order to reason
about manipulation actions. Sequence alignment borrows
techniques from informatics. Our paper deals with grammar
trees, a more detailed representation of manipulation actions.
Chomsky in [12] suggested that a minimalist generative
grammar, similar to the one of human language, also exists
for action understanding and execution. The works closest
related to this paper are [13], [14], [15], [16]. [13] first
discussed a Chomskyan grammar for understanding complex
actions as a theoretical concept, [14] provided an implemen-
tation of such a grammar using as perceptual input only ob-
jects, and Guha et al. [15] suggested a set of atomic symbols
for describing movement.[16] proposed a set of context-free
grammar rules for manipulation action understanding, as well
as a set of operations to parse the subject, action, object
triplets into grammatical tree structures. Since the tree banks
are created using the methods from [16], we will briefly
introduce the grammar and parsing rules in Sec. III.

In the field of computational linguistics, there have been
attempts to train robots using natural language [17] by
identifying robot primitives from natural language utterances.
The most explored area has been robot navigation using
natural language instructions in works like [18], [19] where
semi-structured environment, grounded knowledge etc. are

used by the robot to infer actions from natural language
commands. Attempts to use natural language tree like struc-
tures is less common but present in works like [20] where
parsing of natural language instructions plays an important
part in generating tree like plans for the robot. The logical
extension of these works is to make tree banks of the
actions themselves and use them to reason about actions in a
language like manner. Also, in [21] a probabilistic first-order
knowledge base was built as action-specific knowledge for
robots acting in household environments. In this paper we
further focus on manipulation actions, and propose to build
tree banks for manipulation actions to serve as a hierarchical
knowledge base for autonomous humanoids to effectively
perform reasoning and prediction over the learned semantic
structures. We did experiments on two sets of datasets at
different levels of granularity.

III. A Grammatical Representation ofManipulation
Actions

In [16] a context-free grammar was proposed for robots
to understand human manipulation actions. Every complex
activity is built from smaller blocks, where a block is a
“Subject”, “Action” and “Patient” triplet. Here, a “Subject”
can be either a hand or an object, and the same holds for the
“Patient”. Furthermore, a complex activity also has a basic
recursive structure, and can be decomposed into simpler
actions. For example, the typical manipulation activity “saw-
ing a plank” is described by the top level triplet “handsaw
saw plank”, and has two lower level triplets (which in time
proceed the top level action), namely “hand grasp saw”
and “hand grasp plank”. The following Manipulation Action
Context-Free Grammar (MACFG) (Table. I) was proposed
to parse manipulation actions, and in this work we follow
the same grammatical rules.

AP → A O | A HP (1)
HP → H AP | HP AP (2)
H → h
A → a
O → o (3)

TABLE I: Manipulation Action Context-Free Grammar.

The nonterminals H, A, and O represent hand, action and
object (tools and objects under manipulation), respectively,
and the terminals, h, a and o are the observations. AP stands
for Action Phrase and HP for Hand Phrase.

The design of this grammar is motivated by these observa-
tions: First, the main and only driving force in manipulation
actions are the hands. Thus, a specialized nonterminal sym-
bol H is used for their representation. Second, an Action
(A) can be applied to an Object (O) directly or to a Hand
Phrase (HP), which in turn contains an Object (O). This is
encoded in Rule (1), which builds up an Action Phrase (AP).
Finally, an Action Phrase (AP) can be combined either with
the Hand (H), or a Hand Phrase. This is encoded in rule
(2), which recursively builds up the Hand Phrase. The rules
above form the syntactic rules of the grammar used in the
parsing algorithms.



To automatically parse the key semantic triplets (subject,
action, patient) into tree structures, two operations, CON-
STRUCTION() and DESTRUCTION() were proposed also.
For more details, please refer to [16].

IV. Manipulation Action Tree Bank

The concept of a “tree bank” is widely used in the field
of computational linguistics, such as the Penn Treebank [2].
Different from natural language tree banks, where the basic
unit is a parsed grammar tree for each tagged sentence, each
tree for manipulation actions, represents the current status
of the action. Since every primitive action in a complex
manipulation activity comes in a temporal order, for each
sequence, a list of trees are created. For example, Fig. 2
shows a typical set of trees that represent the action “Cutting
a Tomato and Put Tomato into Bowl”.

Thus for each manipulation action S n, with n ∈ (1...N) in
the dataset Dm, a list of trees Tn is created. Tn = {tn

1, t
n
2...t

n
k }

where k is the number of key semantic triplets involved in
the activity. In Sec. V, two tree banks at different levels of
semantic granularity are created from two publicly available
and annotated manipulation action datasets.

V. Datasets and Experiments

A. Datasets

Cooking actions are a typical group of manipulation
actions, and we use such actions here as testing-bed for both
action understanding and execution. To test manipulation
action tree banks, we use two state-of-the-art fully annotated
cooking datasets, namely the 50 Salad Dataset [22] and the
TACoS Cooking Dataset [23]. Though they are both cooking
datasets, each of them has its own focused set of actions,
which makes them a great complement to each other. A brief
introduction for both datasets is given below. Table. II lists
the technical details for each of them.

1) 50 Salad Dataset: The 50 Salad dataset captures 25
people preparing 2 mixed salads each and contains over four
hours of annotated accelerometer and RGB-D video data.
Including detailed annotations, multiple sensor types, and
two sequences per participant, the 50 Salads dataset can
be used for research in areas such as activity recognition,
activity spotting, sequence analysis, progress tracking, sensor
fusion, transfer learning, and user-adaptation.

The 50 Salad dataset has its specific focus on salad
making, capturing the different variations of one typical
manipulation action. Before parsing the (subject, action,
patient) annotations into trees, we first automatically extend
the original annotations with context sub-actions like “hand
grasp knife” and “hand ungrasp knife”. Since the annotations
provided from the 50 salad dataset comes with “pre” and
“post” tags, it can be directly used to indicate constructive
and destructive actions required by the parsing algorithm.
Examples of grammatical trees built from sequences of this
dataset are illustrated in Fig. 2.

2) TACoS Cooking Dataset: The Saarbrücken Corpus
of Textually Annotated Cooking Scenes (short: TACoS)
contains a set of video descriptions (in natural language)
and timestamp-based alignment with the videos. The videos
along with a low-level activity annotation is available as part
of the corpus. It contains 127 kitchen sequences containing
41 different activities ranging from “cut a cucumber” to
“cook carrot soup”. 60 different action labels are used for
annotation (e.g. PEEL, STIR, TRASH). Also a location tag
is accompanied with each (subject, action, patient) triplet
to further modify actions. A straightforward extension of
the grammar (Table. I) by adding in new rules (Table. III)
with a nonterminal “ADV” (adverb), is used to accommodate
the extra information (From location A To location B,
or At location A). Also, since there is no annotation of
destructive actions, we adapt the parsing schema without the
DESTRUCTIVE() routine.

A → A ADV (1)
ADV → From/At To (2)

TABLE III: Extra MACFG rules for location information.

Final grammatical trees built from the first sequence in
the TACoS dataset are illustrated in Fig. 3. Note that all the
non-terminals are emitted to save space.

B. From Manipulation Action Trees to VSGs

Manipulation action trees can be used to generate Visual
Semantic Graphs (VSGs). A visual semantic graph (VSG),
proposed in the work of [24], provides a plausible formalism
for semantic activity representation. This formalism takes as
input computed object segments, their spatial relationship,
and temporal relationship over consecutive frames.

Every frame is described by a Visual Semantic Graph
(VSG), which is represented by an undirected graph
G(V, E, P). The vertex set |V | represents the set of seman-
tically meaningful segments, the edge set |E| represents the
spatial relations between any of the two segments. Two
segments are connected when they share parts of their
borders, or when one of the segments is contained in the
other. If two nodes v1, v2 ∈ V are connected, E(v1, v2) = 1,
otherwise, E(v1, v2) = 0.

The VSG can be generated from the manipulation action
tree sequences by following two rules: 1) replace constructive
actions and destructive actions with connected lines and
disconnected lines; 2) keep the connected lines if the action
is a MERGE action, such as PLACE or PUT. Fig. 2 shows
corresponding manipulation action trees with their VSGs at
each key frame.

C. Tree Edit Distance Analysis

Manipulation action trees can be used to compare the
semantic distance between different steps of the activity. In
order to compare the trees, we use a measure of tree edit
distance. The edit distance between two trees is the minimal-
cost sequence of edit operations on labeled nodes that
transforms one tree into the other. The following operations
are possible, each with its own cost:



Dataset #S eq #Events Ave. #Events/S eq #Activities #Actions #People Ave. Length
50 S alad 54 3820 71 1 (salad making) 17 25 10703 f rames
T ACoS 127 5530 44 41 60 22 4.5 min

TABLE II: Technical details of the 50 Salad and TACoS datasets.
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Fig. 2: Example grammatical trees and visual semantic graphs (VSG). The sample sequence is from the 50 Salad dataset.

Fig. 3: Examples of grammatical trees from the TACoS dataset. The original annotation is given in the table.

• inserting a node (between a node and its children)
• deleting a node (and connecting its children to its parent)
• renaming a node (changing the label)
Efficient algorithms exist for finding the minimal edit

distance. The algorithm used in this paper is from the original
paper by Zhang and Shasha [25]. For the small sizes of
trees we encounter, comparing two trees takes negligible
time and memory. However, because the number of trees are
considerable large, a fast algorithm is desirable. For each
pair of manipulation actions (S n, S m) n,m ∈ (1...N) in the 50
Salad dataset, two lists of trees Tn and Tm are parsed in the
tree bank. Tn = {tn

1, t
n
2...t

n
k }, Tm = {tm

1 , t
m
2 ...t

m
l } where k, l are

the number of key semantic triplets involved in S n and S m

respectively. A tree edit distance matrix D(n,m) with a size
of k × l is computed by finding the minimal edit distance
between each tree pair T n

i and T n
j , i ∈ (1...k), j ∈ (1...l),

D(n,m) =


D(tn

1, t
m
1 ) D(tn

1, t
m
2 ) · · · D(tn

1, t
m
l )

D(tn
2, t

m
1 ) D(tn

2, t
m
2 ) · · · D(tn

2, t
m
1 )

...
...

...
D(tn

k , t
m
1 ) D(tn

k , t
m
2 ) · · · D(tn

k , t
m
l )

 . (1)

Fig. 4 shows four typical pairs of distance matrices from
the 50 salad tree bank. The X and Y axis indicate the
temporal order of each sequence respectively.

D. Action Tree Embedding Analysis

The tree bank of manipulation actions can be used to dis-
cover the underlying semantic space of the activity. In order
to show that the tree bank generated from the manipulation
action grammar captures the underlying semantic space of
the manipulation action, we apply multidimensional scaling
(MDS) on the distance matrix D (which was computed using
the minimal edit distance from Sec. V-C.) Specifically, D
is constructed by concatenating the D(n,m) for each pair of
n,m ∈ (1...N),

D =


D1,1 D1,2 · · · D1,N
D2,1 D2,2 · · · D2,N
...

...
...

DN,1 DN,2 · · · DN,N

 . (2)

The goal of MDS is, given D, to find I vectors x1, . . . , xI ∈

RN such that ‖xi − x j‖ ≈ Di, j, for all i, j ∈ I, where ‖ · ‖ is a
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Fig. 4: 50 Salad Dataset, Sequence 3 trail 2. (a) Self distance
(b) With Sequence 22 Trail 1, a similar way of making
a salad (c) With Sequence 24 Trail 1, making salad in a
different order; (d) With Sequence 25 Trail 2, large variation,
a total different way of making salad.

vector norm, and I is the total number of action trees in the
tree bank. In this work we simply applied the most widely
used classical MDS, using the Euclidean distance as norm.

After applying MDS on D from the 50 Salad tree bank, the
embedded space is plotted in Fig. 5. Each dot in the figure is
a manipulation action tree in the tree bank, and trees from the
same manipulation action share the same color. The top three
dimensions are used since they best capture the underlying
semantic space for the 50 Salad tree bank.

Fig. 5a shows a top-down view of the space. The data
points form a ring. This is desirable, because each salad
making activity in the dataset starts from an empty tree
(no object or tool is used) and ends with an empty tree
(both objects and tools are released). Each intermediate step
involves the hand(s) using object(s) or tool(s) to apply an
action onto another object. The corresponding data points
are located on the path of the ring. Fig. 5b shows a side
view of the space. The data forms three clusters. This is also
desirable, because each intermediate step in salad making
involves a START step (no object or tool grasped), a GRASP
step (object or tool grasped) and an ACT step (action applied
onto object). In fact, from another viewpoint, Fig. 5c shows
that the underlying semantic space of salad making in the
50 Salad tree bank indeed consists of three rings.

A trace connecting dots in the space represents each salad
making scenario in the 50 salad tree bank. Fig. 5d, 5e, 5f
and 5g respectively plot the traces of four typical scenarios
discussed in Sec. V-C, which are sequence 3 trail 2, sequence
22 trail 1, sequence 24 trail 1 and sequence 25 trail 2.

E. A Reasoning Example using Action Tree Bank

We organize our tree banks following the Penn tree bank
format, which makes it plausible to apply off-the-shelf tools

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 5: Manipulation action tree embedding analysis and
semantic space discovery.

such as “Tregex” and “tgrep”. These tools are widely used in
the computational linguistics community to search tree banks
using regular expressions. Thus, humanoid robots that are
equipped with the action knowledge in a tree bank fashion
have the advantage to do action-centric reasoning easily.

In fig. 6, we show an example using the “Tregex” GUI
program to reason in the 50 salad-making tree bank. After
observing a “knife” and a “tomato” on the table, the hu-
manoid robot can initialize a search to find sub-trees that
contain both “knife” and “tomato” using regular expression.
The program returns all the sub-tree matches from the action
tree bank. Apparently, in the salad-making scenario, when
both “knife” and “tomato” are observed, “hand grasp knife
cut tomato” is the most common action to do. This action
command can be further used to drive the humanoid. A
similar search, which is to find a sub-tree contains both
“tomato” and “bowl”, returns an action command “hand
grasp tomato place (into) bowl” from the same tree bank.
Moreover, since the system is able to return not only the
matching sub-trees, but also their temporal locations in each
sequences, the robot can easily figure out that “cut tomato”
precedes “ tomato place (into) bowl” in this scenario.

In this section we describe one example of using the Penn
style tree bank to do reasoning for humanoids. More com-
plicated searches can be conducted by cooperating “and”,
“or” or “neglect” logics in the regular expressions. A regular
expression generation engine, which can be driven by low-
level visual systems such as object recognition and tracking,
can generate these searches automatically. Also, it is worth
pointing out that there are other more sophisticated tools to



Fig. 6: An example of using “tregex” to achieve action
commands from the tree bank knowledge resource.

do reasoning and learning from tree banks. These techniques
can also be applied onto autonomous humanoid robots.

VI. Conclusion and FutureWorks

In this paper, we presented manipulation action tree banks
for robot action understanding and execution. We created the
knowledge resource using the manipulation action context-
free grammar and its associated parsing algorithms. We
conducted three experiments on the proposed tree bank.
We showed that the tree bank is able to generate visual
semantic graphs, and we compared semantic distances to
discover the underlying semantic space. Additionally, we
showed an example of querying the tree bank to do reasoning
for humanoids robot under a specific scenario.

In current work we are integrating the presented linguistic
resource with low-level vision tools on a humanoid platform.
We are developing a cognitive robot system that equipped
with the proposed tree banks deals with the uncertainty as
well as the complexity of everyday human manipulation
activities. We are also working on an analysis of the dif-
ferent levels of granularity of manipulation tasks in order
to possibly take shallow parses of the grammatical trees to
find a coarse similarity between different domains of every
manipulation actions.
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